An Application of Nonstationary Iterative Methods for Solving a Multi-Country Model with Rational Expectations
نویسندگان
چکیده
In this paper we present an implementation of a Newton method based on iterative Krylov subspace methods such as GMRES, QMR and BiCGSTAB for solving large nonlinear macroeconometric models. These methods are tested for the solution of the model MULTIMOD and the computational costs of the diierent techniques are compared together with a sparse direct method.
منابع مشابه
Solving systems of nonlinear equations using decomposition technique
A systematic way is presented for the construction of multi-step iterative method with frozen Jacobian. The inclusion of an auxiliary function is discussed. The presented analysis shows that how to incorporate auxiliary function in a way that we can keep the order of convergence and computational cost of Newton multi-step method. The auxiliary function provides us the way to overcome the singul...
متن کاملApplication of iterative method for solving fuzzy Bernoulli equation under generalized H-differentiability
In this paper, the Picard method is proposed to solve the Bernoulli equation with fuzzy initial condition under generalized H-differentiability. The existence and uniqueness of the solution and convergence of the proposed method are proved in details. Finally an example shows the accuracy of this method.
متن کاملSolving Volterra's Population Model via Rational Christov Functions Collocation Method
The present study is an attempt to find a solution for Volterra's Population Model by utilizing Spectral methods based on Rational Christov functions. Volterra's model is a nonlinear integro-differential equation. First, the Volterra's Population Model is converted to a nonlinear ordinary differential equation (ODE), then researchers solve this equation (ODE). The accuracy of method is tested i...
متن کاملA New Two-stage Iterative Method for Linear Systems and Its Application in Solving Poisson's Equation
In the current study we investigate the two-stage iterative method for solving linear systems. Our new results shows which splitting generates convergence fast in iterative methods. Finally, we solve the Poisson-Block tridiagonal matrix from Poisson's equation which arises in mechanical engineering and theoretical physics. Numerical computations are presented based on a particular linear system...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007